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Adsorption and collapse of self-avoiding walks at a defect
plane

Tereza Vrbov́a and Stuart G Whittington
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada

Abstract. We consider self-avoiding walks and polygons on the simple cubic lattice with a
vertex–vertex interaction (i.e. a contact interaction), which also interact with a defect plane,
z = 0. The walks or polygons can undergo a collapse transition, and can also adsorb at the
defect plane. For the polygon case we prove that the limiting free energy exists, and show that
there is an adsorption transition for each finite value of the vertex–vertex interaction. We use
Monte Carlo methods to investigate the form of the phase diagram for the walk problem.

1. Introduction

Surface effects in magnetic systems have been widely studied since the pioneering work
of Binder and Hohenberg (1972) and Bray and Moore (1977). If one considers a
magnetic system with a (ferromagnetic) interactionJ between bulk spins and a different
(ferromagnetic) interactionJ1 between surface spins there are two interesting cases. The
first is when the surface is a boundary of the magnet, and the second is when it forms a
defect plane within the magnet. Each problem has a polymer analogue.

Consider the simple cubic latticeZ3. In the first case, the analogous situation is a self-
avoiding walk starting in the planez = 0, confined to the half-spacez > 0, and interacting
with the surface plane. This is a model of polymer adsorption at a surface and has been the
subject of considerable research for over 30 years. It is known (Hammersleyet al 1982)
that the model exhibits a phase transition corresponding to adsorption, and the location of
the transition has been estimated by exact enumeration and Monte Carlo methods. For
recent reviews see De’Bell and Lookman (1993) and Eisenriegler (1993).

In the second case, the self-avoiding walk interacts with the planez = 0 but can cross
the plane. This has been suggested as a possible model of polymer adsorption at a liquid–
liquid interface. Again it is known that the model has a phase transition (Hammersley
et al 1982) and the location of the transition is thought to be at ‘infinite temperature’ for
any attractive interation. The model has been studied by real-space renormalization group
techniques (Nakanishi 1981) and by exact enumeration and series analysis (Ishinabe 1984,
Zhaoet al 1990).

Long linear polymers in dilute solution can also undergo a collapse transition from an
open coil to a compact ball. The exponent (ν) characterizing the dependence of the mean
square radius of gyration

〈S2
n〉 ∼ n2ν (1.1)

on the degree of polymerization (n) changes at this transition point. In the collapsed (low
temperature) phase one expects thatν = 1/3 in three dimensions, while in the expanded
(high temperature) phaseν ≈ 0.588 (Li et al 1995). The experimental observation of a
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dramatic change in the dimensions as a function of temperature or solvent quality has been
reported by several groups (Nishioet al 1979, Sunet al 1980, 1990, Nakata 1995). The
transition has been studied theoretically for a model in which a short range attractive force
is associated with nearby pairs of vertices of a self-avoiding walk. Many results for this
model have been obtained using Monte Carlo methods (Webmanet al 1981, Meirovitch
and Lim 1989, Grassberger and Hegger 1995, Tesiet al 1996a, Nidras and Brak 1997).

Polymer adsorption can occur from poor or good solvents and the special case of
adsorption at theθ point has attracted particular attention. The values of various surface
critical exponents have been estimated numerically (Vanderzandeet al 1991, Fosteret al
1992, Hegger and Grassberger 1994), and renormalization group arguments predict that the
three-dimensional system will have random walk exponents but with novel non-power-law
logarithmic corrections (Eisenriegler and Diehl 1988).

Several authors have considered the influence of the adsorption and collapse phenomena
on one another. Foster (1990) and Foster and Yeomans (1991) have analysed the case of
a directed polymer model in two dimensions. They observed three phases: a desorbed-
expanded phase, a desorbed-collapsed phase and an adsorbed phase, and derived the form
of the phase diagram. A similar phase diagram was reported (using exact enumeration and
series analysis methods) for an undirected model in two dimensions by Fosteret al (1992).
We (Vrbov́a and Whittington 1996) derived some rigorous results about the form of the
phase diagram in three dimensions where one expects two adsorbed phases, one expanded
and one collapsed, and studied the nature of the phase diagram using Monte Carlo methods
(Vrbová and Whittington 1998).

The aim of this paper is to investigate the form of the phase diagram in three dimensions
when the polymer is interacting with a penetrable (rather than an impenetrable) surface,
which corresponds to the defect plane model.

2. Some rigorous results

We consider the simple cubic latticeZ3 whose vertices are the integer points inR3 and
whose edges connect pairs of vertices which are unit distance apart. Aself-avoiding walk
is an alternating sequence of vertices and edges such that all vertices are distinct. We shall
normally consider self-avoiding walks with a vertex of degree one at the origin, and write
cn for the number of such walks withn edges.

A contact is an edge of the lattice which is incident on two vertices of the walk but is
not an edge of the walk. Avisit is a vertex of the walk in the planez = 0. Let cn(v, k) be
the number of self-avoiding walks withn edges, starting at the origin, havingv + 1 visits
andk contacts. We call such walksattached walks. Define the generating function

Cn(α, β) =
∑
v,k

cn(v, k)e
αv+βk. (2.1)

Similarly, letc+n (v, k) be the number of these walks with the added restriction that no vertex
has negativez-coordinate. We call such walkspositive walksand define their generating
function to be

C+n (α, β) =
∑
v,k

c+n (v, k)e
αv+βk. (2.2)

Clearly
∑

v,k cn(v, k) = cn and we write
∑

v,k c
+
n (v, k) = c+n wherec+n is the total number

of n-edge positive walks.
We call an embedding of the circle graph inZ3 a polygon. The bottom vertexof a

polygon is the vertex whose coordinates are lexicographically first. Letpn be the number of
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undirectedn-edge polygons, with their bottom vertex at the origin. It is known (Hammersley
1961, Whittington 1975) that

0< lim
n→∞ n

−1 logpn = lim
n→∞ n

−1 logcn = lim
n→∞ n

−1 logc+n = κ <∞. (2.3)

We are interested in undirected polygons with at least one vertex in the planez = 0.
Among the vertices of the polygon with zeroz-coordinate, one will havex- and y-
coordinates which are lexicographically first. We call this vertex theorigin of the polygon.
If the origin of the polygon is(0, 0, 0) we call the polygon anattached polygon. We call
the subset of attached polygons which have no vertex with negativez-coordinatepositive
polygons. Let the number ofn-edge attached polygons withv + 2 visits andk contacts be
pn(v, k) and let the corresponding number of positive polygons bep+n (v, k). Define their
generating functions to be

Pn(α, β) =
∑
v,k

pn(v, k)e
αv+βk (2.4)

and

P+n (α, β) =
∑
v,k

p+n (v, k)e
αv+βk. (2.5)

Using concatenation arguments similar to those in Vrbová and Whittington (1996) we
can prove the following theorem.

Theorem 2.1.The limiting free energy of attached polygons

κ0(α, β) = lim
n→∞ n

−1 logPn(α, β) (2.6)

exists for all finite values ofα andβ. In additionκ0(α, β) is a doubly convex, monotone
non-decreasing function ofα andβ.

Vrbová and Whittington (1996) proved the existence of the limiting free energy

κ+0 (α, β) = lim
n→∞ n

−1 logP+n (α, β) (2.7)

for all finite values ofα andβ, for positive polygons. Moreover they showed that

lim
n→∞ n

−1 logC+n (α, β) = κ+0 (α, β) (2.8)

for all β 6 0, α <∞, and that

κ+0 (α, β) = κ+0 (0, β) (2.9)

for anyα < 0, for all finite β.
We next prove some similar results aboutκ0(α, β). Our results are contained in the

following theorem.

Theorem 2.2.The limiting free energies of positive and attached polygons are related by
the inequality

κ+0 (α, β) 6 κ0(α, β) (2.10)

for all finite α andβ. Moreover,

κ0(α, β) = κ0(0, β) = κ+0 (0, β) (2.11)

for all α < 0, for all finite β, and

max[κ0(0, β), κ2(β)+ α] 6 κ0(α, β) 6 κ0(0, β)+ α (2.12)

for α > 0, for any finiteβ. κ2(β) is the limiting free energy for self-interacting polygons
on the square lattice.
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Proof. Since positive polygons are a subset of attached polygons,p+n (v, k) 6 pn(v, k), so
thatP+n (α, β) 6 Pn(α, β) and (2.10) follows on taking logarithms, dividing byn and letting
n tend to infinity. We note that any attached polygon is a translate of a positive polygon.
In this translation the value ofv might change but the value ofk is fixed. This implies that∑

v

p+n (v, k) 6
∑
v

pn(v, k) 6
n

2

∑
v

p+n (v, k) (2.13)

from which it follows that

κ+0 (0, β) = κ0(0, β) (2.14)

for any finiteβ. But κ0(α, β) is a non-decreasing function ofα at fixedβ and, using (2.9)
and (2.10), we have (2.11) for allα < 0, for all finite β. To prove (2.12) we fixβ < ∞
and take anyα > 0. Then

Pn(α, β) 6
∑
v,k

pn(v, k)e
αn+βk = eαnPn(0, β). (2.15)

The upper bound in (2.12) follows on taking logarithms, dividing byn and lettingn→∞.
To obtain the lower bound we first note thatκ0(α, β) is non-decreasing inα so that
κ0(α, β) > κ0(0, β) for any positiveα. Then we bound the partition function by taking
only a subset of the (non-negative) terms in the sum, giving

Pn(α, β) >
∑
k

pn(n− 2, k)eα(n−2)+βk. (2.16)

Taking logarithms, dividing byn and lettingn go to infinity gives

κ0(α, β) > lim
n→∞ n

−1 log
∑
k

pn(n− 2, k)eβk + α ≡ κ2(β)+ α. (2.17)

Then (2.12) follows immediately. �

Theorem 2.3.There is a phase boundary between desorbed and adsorbed phases and this
phase boundary is at a non-negativeα and is never above the corresponding phase boundary
for the half-space problem.

Proof. Equations (2.11) and (2.12) imply thatκ0(α, β) is a non-analytic function ofα for
every finiteβ. This implies the existence of a phase boundary between the desorbed and
adsorbed phases which we write asα = αc(β). From (2.11) and (2.12) it is clear that
αc(β) > 0. Vrbov́a and Whittington (1996) showed the existence of a similar curve of
singularities for positive polygons, which we write asα = α+c (β). From (2.10) it follows
thatα+c (β) > αc(β). �

We next state a theorem about the shape of the phase boundary between the desorbed-
expanded and desorbed-compact phases.

Theorem 2.4.If attached polygons exhibit a collapse transition atβ = β0 for α = 0 then
there is a line,β = β0, of collapse transitions between a desorbed-expanded and a desorbed-
compact phase for attached polygons, for allα < αc(β0).

Proof. The proof is essentially identical to the proof of theorem 3.4 in Vrbová and
Whittington (1996). �
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In addition, positive polygons and attached polygons collapse at the same value ofβ.
This follows atα = 0 from the fact that every attached polygon is a translate of a positive
polygon, and the number of contacts is not affected by the translation. This result extends
to all values ofα < αc(β0), using theorem 2.4.

The next theorem connects the limiting free energies of attached walks and attached
polygons.

Theorem 2.5.The limiting free energy

κ(α, β) = lim
n→∞ n

−1 logCn(α, β) (2.18)

exists for allβ 6 0 and allα <∞ and, under these conditions,

κ(α, β) = κ0(α, β). (2.19)

In addition, if the mean number of contacts in attached polygons is at least as large as
the mean number of contacts in attached walks, for allα < ∞ and for all positiveβ, for
sufficiently large evenn, then the limit definingκ(α, β) exists and (2.19) remains true for
all finite β.

Proof. The proof is similar to the proof of theorem 2.10 in Vrbová and Whittington (1996)
and theorem 2.8 in Tesiet al (1996b). �

3. Monte Carlo method and results

The Monte Carlo method which we have used is very similar to that described in Vrbová
and Whittington (1998), and we give only a very brief summary. The method is a Markov
chain Monte Carlo scheme based on the pivot algorithm (Lal 1969, Madras and Sokal 1988)
with additional local moves. To avoid the long autocorrelation times associated with the
compact phases we implemented this using multiple Markov chains (Geyer 1991, Tesiet al
1996a) with swap probabilities chosen to make the limit distribution of the Markov chain
equal to the product of the marginal distributions of the elementary Markov chains.

We first consider the caseβ = 0 corresponding to the pure adsorption problem. We
expect that the limiting free energy will be singular atα = αc(0) ≡ α0 and that close to
this value it will behave as

|κ(α, 0)− κ(α0, 0)| ∼ |α − α0|1/φ (3.1)

whereφ is the crossover exponent. At finiten there will be peaks in the second derivative
of the free energy (the heat capacity) and the height of the peak atα = α0 should scale as

hn ∼ n2φ−1. (3.2)

For the case of an impenetrable planeφ is thought to be1
2 (Hegger and Grassberger 1994) or

a little greater (Eisenriegleret al 1982, Meirovitch and Livne 1988) so that the heat capacity
peaks should diverge asn increases, and their position should approach the value ofα0.
Hence the heat capacity peaks are a useful device for locating the adsorption transition.
For the defect plane caseφ = 1− ν (Bray and Moore 1977) which is less that1

2 in three
dimensions, so that 2φ−1< 0 and the heat capacity peaks decrease in height asn increases.
Peaks in the heat capacity at finiten may not reflect the singularity inκ(α, 0) but may come
from the analytic background contribution. For this reason we chose to locate the adsorption
transition using a different method. We expect a graph of〈v〉/n as a function ofα to have
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Figure 1. The mean number of visits per edge,〈v〉/n, as a function ofα at β = 0 for n = 50
(◦), n = 100 (•), n = 200 (?) andn = 800 (×).

an inflexion point at each value ofn, and the tangent at this inflexion point should cut the
α-axis at ann-dependent value,αn. The sequence ofαn values should approach a value
which is no smaller thanα0, asn → ∞. Since we know thatα0 > 0 this gives a useful
method for locating the transition. In figure 1 we show theα-dependence of〈v〉/n for
several values ofn at β = 0. The adsorption transition occurs at a value ofα between
α = 0 andα = 0.05.

In section 2 we argued that the location of the collapse transition occurs at a value of
β which is independent ofα for α 6 αc(β). To confirm this we examined∂2κn(0, β)/∂β2

as a function ofβ for n = 50 and 100. The location of the peak in∂2κn(0, β)/∂β2 is very
similar to the corresponding location for the impenetrable case, and moves to smaller values
of β asn increases. We have carried out similar calculations for two negative values ofα

and the peak positions are essentially independent of the values ofα, consistent with this
phase boundary being a vertical line.

To locate the phase boundaries between the adsorbed-expanded and adsorbed-compact
phases, and between the adsorbed-compact and desorbed-compact phases we carried out
multiple Markov chain runs in which we began atα = β = 0, increasedα at β = 0 to a
value above the adsorption transition, and then increasedβ at fixedα until we reached the
desorbed-compact phase. Let

κn(α, β) = n−1 logCn(α, β). (3.3)

In figure 2 we show theβ-dependence of∂2κn(α, β)/∂β
2 for n = 100 at three values of

α. In each case we see two peaks in∂2κn(α, β)/∂β
2. The peak at the lower value ofβ is

roughly independent of the value ofα while the second peak position moves to larger values
of β asα increases. In figure 3 we show theβ-dependence of〈v〉/n at the three values ofα.
In each case there is a rapid decrease in〈v〉/n at a value ofβ corresponding to the second
peak in figure 2. Similarly thez-component of the radius of gyration increases rapidly
around this value ofβ so we are confident that the second peak in figure 2 corresponds to
desorption in the compact regime, while the first peak must be associated with collapse in
the adsorbed regime. In figure 4 we compare the behaviour of∂2κn(α, β)/∂β

2 at α = 1.39
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Figure 2. The β-dependence of∂2κn(α, β)/∂β
2 for n = 100, atα = 1.25 (◦), α = 1.39 (•)

andα = 1.50 (?).

Figure 3. The mean number of visits per edge,〈v〉/n, as a function ofβ at α = 1.25 (◦),
α = 1.39 (•) andα = 1.50 (?).

for n = 50 and 100. The peaks increase in height asn increases so that we have no reason
to suspect that the peaks might disappear in the largen limit.

To confirm the location of the phase boundary between the adsorbed-collapsed and
desorbed-collapsed phases we carried out multiple Markov chain runs beginning atα =
β = 0, first decreasing the value ofα to α ≈ −1 (to make sure that we were in the
desorbed-expanded phase), and then increasingβ at this fixed value ofα (to cross into the
desorbed-collapsed regime). Then withβ fixed (for instance atβ = 1.17) we increasedα
to aboutα = 1.5. In figure 5 we show theα-dependence of∂2κn(α, β)/∂α

2 at β = 1.17
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Figure 4. Theβ-dependence of∂2κn(α, β)/∂β
2 at α = 1.39, forn = 50 (◦) andn = 100 (•).

Figure 5. Theα-dependence of∂2κn(α, β)/∂α
2 at β = 1.17, forn = 50 (◦) andn = 100 (•).

for n = 50 and 100. The second peak in the figure increases in height asn increases and its
location is close to the location of the phase boundary between the desorbed-compact and
adsorbed-compact phases, as estimated from figure 2. However, the first peak at around
α = −0.1 also increases in height asn increases. To understand this we first note that

∂κ(α, β)

∂α
= lim

n→∞
〈v〉
n
= 0 (3.4)

everywhere in the desorbed phases, so that we expect that the first peak in∂2κn(α, β)/∂α
2

will disappear in the infiniten limit, provided that the second peak is associated with the
adsorption transition. Our explanation for the existence of the first peak at finiten is as
follows. At α = 0 andβ > β0 the walk will be a compact object straddling the defect
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Figure 6. Theα-dependence of〈v〉/n at β = 1.17, for n = 50 (◦), n = 100 (•) andn = 200
(?).

plane so that O(n2/3) vertices will be in the defect plane. For anyα < 0 there will be an
energetic disadvantage to having vertices in the defect plane and the walk can reduce the
number of visits by moving out of the defect plane while remaining compact, with a small
entropic penalty (since a vertex of degree one must then be outside the compact region of
the walk). This suggests that〈v〉/n will be O(n−1) for α < 0 and will increase to become
O(n−1/3) for α positive but less thanαc(β), and O(1) for α > αc(β). In figure 6 we show
the α-dependence of〈v〉/n at β = 1.17 for n = 50, 100 and 200. The behaviour roughly
coincides with our expectations.

In figure 7 we show an approximate phase diagram obtained from our Monte Carlo
results. The points are all forn = 100 and, of course, their positions are expected to change
in detail asn increases, so that the diagram is only suggestive of the general behaviour in
the n→∞ limit. The points corresponding to the phase boundary between the desorbed-
expanded and adsorbed-expanded phases come from the ‘tangent at the inflexion point’
construction described above, and the remaining points come from peaks in the ‘heat
capacities’. A similar calculation atn = 50 shows only minor changes in the locations
of the phase boundaries.

4. Discussion

We have discussed the adsorption and collapse behaviour of self-avoiding walks and
polygons at a defect plane on the simple cubic lattice. We showed rigorously that, for
polygons, there is an adsorption transition for any finite value of the vertex–vertex interaction
parameter (β). This phase boundary is at a value of the vertex–surface interaction parameter
(α) which is no larger than for polygons interacting with an impenetrable surface. We also
showed that if polygons collapse in the absence of an interaction with the defect plane then
there is a phase boundary between the desorbed-expanded and desorbed-compact phases
which is a straight line.

We used a multiple Markov chain algorithm based on a mixture of pivot and local moves
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Figure 7. The locations of the ‘heat capacity’ peaks (for the transitions involving a collapsed
phase) and the intersections of a tangent at the inflection point of〈v〉 versusα with the x-
axis (desorbed-expanded to adsorbed-expanded phase transition) forn = 100. The diamonds
correspond to peaks in∂2κn(α, β)/∂α

2 at fixed β, the crosses correspond to peaks in
∂2κn(α, β)/∂β

2 at fixed α, and the squares correspond to the intersections of the tangent at
the inflection point of〈v〉 versusα with the x-axis.

to probe the details of the phase diagram. The method is highly effective at sampling in
compact phases. Our results can be summarized by the phase diagram shown in figure 7.
We clearly see four phases. The phase boundary between the desorbed-expanded and
adsorbed-expanded phases seems to be close to the lineα = 0, which agrees with previous
results for the special case ofβ = 0 (Hammersleyet al 1982, Zhaoet al 1990). The
phase boundary between the desorbed-expanded and desorbed-collapsed phases seems to be
a vertical line, in agreement with the results of section 2. For largeβ the phase boundary
between the desorbed-collapsed and adsorbed-collapsed phases is very close to that for
the half-space problem (Vrbová and Whittington 1998). The phase boundary between the
adsorbed-expanded and adsorbed-collapsed phases is quite steep but our results are not
sufficiently precise to decide on whether it has positive or negative slope. At the values
of n for which we were able to sample efficiently we clearly see evidence for two triple
points, so that there seems to be a phase boundary between the adsorbed-expanded and
desorbed-collapsed phases.

We emphasize that our results are at modest values ofn so that the quantitative details
of the phase diagram are only approximate. Although we see no significant differences
at the values ofn which we used, further results at largern values, and extrapolations to
infinite n, would be very interesting.
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